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Abstract

We develop and compare multiple finite difference schemes for a size structured coagulation-
fragmentation model formulated in the space of Radon measures under the Bounded-
Lipschitz norm. In particular, we develop a fully explicit scheme, a semi-implicit
scheme, and an explicit scheme based on the mass conservation law governed by the
model. We prove convergence for each scheme and test the schemes against multiple
well-known examples. We analyze and compare important properties of each scheme
such as mass conservation, order of convergence, and computation time.
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1 Introduction
Coagulation equations have been studied in various forms since the pioneering work of Smolu-
chowski [64] where a system of differential equations was used to form a discrete coagulation
model. This model was later taken into a continuous setting by Müller [51] where the sys-
tem of differential equations was changed to an integro-differential equation. The history
of fragmentation equations followed a similar development with Blatz and Tobolsky [13]
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introducing discrete fragmentation kernels which were extended to a continuous setting by
Melzak [50].

Since their development, coagulation-fragmentation equations have had many uses in
various applications in physics, chemistry, and biology. In particular, they have receive
much attention in the study of population dynamics of oceanic phytoplanton [1, 4, 5, 11,
15, 36, 37, 60]. The idea of combining coagulation equations with size structured models
was first introduced by Ackleh and Fitzpartick in [5]. Later, Ackleh extended this idea to
include binary fragmentation in [1]. These models take the form of a first-order hyperbolic
differential equation with nonlinear and nonlocal ingredients. The coagulation-fragmentation
terms are useful in this application as phytoplankton populations tend to be modeled as
collections of single cells adhered together via an organic glue. Through collisions, these
groups of cells can either stick together to form an assemblage of greater size (coagulate)
or split into groups of smaller sizes (fragment). The natural growth of assemblages due to
single cell division is naturally modeled via a first order structured hyperbolic equation. As
mentioned before, coagulation-fragmentation equations can be studied with either a discrete
or continuous structure. In this paper, we make use of the setting of Radon measures to
simultaneously study both cases. In this light, we consider the following size structured
coagulation-fragmentation model presented in [7]:

∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ], (t, x) ∈ (0, T )× (0,∞),

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy), t ∈ [0, T ],

µ(0) = µ0 ∈M+(R+),

. (1)

where µ(t) belongs toM+(R+), the set of finite nonnegative Borel measures on R+ := [0,∞).
Here, given a Borel subset A ⊂ R+, µt(A) := µ(t)(A) represents the number of individuals
at time t of size x in A, and the functions g and d represent the growth and death rate
of individuals at time t of size x, respectively. Likewise, the function β represents the
reproduction rate of these individuals. More precisely, at time t and distribution µ(t), an
individual with size x produces offspring at rate β(t, µ(t))(x). Finally, Ddxµ(0) denotes the
Radon-Nikodym derivative of µ(t) with respect to the Lebesgue measure, dx, at the point
x = 0. For more information about size structured models in a measure setting, we direct the
reader to [6, 32]. Finally, K and F are the coagulation and fragmentation terms respectively
that we will precisely define later.

As argued in [7], equation (1) in the framework of measure-valued solution allows nat-
urally to unify both the discrete and continuous coagulation-fragmentation equation. In
general the measure framework has proven to be useful in the modeling not only of biologi-
cal phenomena but also of social and economical phenomena (see e.g. [54, 55, 56, 57, 58, 61]
and references therein).

It is an important property of model (1) that the mass of the total population,
∫∞

0
xµ(dx),

is conserved in the coagulation-fragmentation terms. With this in mind, this model can also
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be written in a conservation law like form as in [48, 66]:
∂t(xµ) + x∂x(g(t, µ)µ) + xd(t, µ)µ = ∂xQF [µ]− ∂xQK [µ],

g(t, µ)(0)Ddxµ(0) =

∫ ∞
0

β(t, µ)(x)µ(dx),

µ0 ∈M+(R+),

(2)

for some integral kernels QF [µ] and QK [µ] satisfying ∂xQF [µ] = xF [µ] in the sense of distri-
butions.

Throughout literature, there are many assumptions on the kernels of the coagulation and
fragmentation terms [10, 33, 38, 52, 19, 50, 49, 40, 28, 29]. Though these assumptions are
important to many other applications, they tend to be nonsensical in the context of oceanic
phytoplankton. In particular, the size of aggregates should be bounded as there is a maximum
size aggregates can maintain. In light of this, we will stick to similar assumptions presented
in [7] which will be explicitly stated later. We also include the additional assumption of the
existence of a maximum size, xmax, for which larger assemblages cannot be produced via the
coagulation process. This assumption is natural in application as physical limits prevent the
existence of arbitrarily large aggregates.

In this article, we develop and compare numerical schemes based on models (1) and
(2) using similar finite-difference techniques discussed in [6]. Finite-difference techniques
have many advantages including straight-forward implementation and accessibility. One
main advantage of the finite-difference schemes is the ease of lifting schemes to higher-order
accuracy as done in the aforementioned paper. Higher-order schemes are a necessity in
optimal control and inverse problems where one is required to solve the equation in question
multiple times. These methods have been well studied in both a smooth and integrable
setting [46, 63]. However, there is currently little work done with finite-difference schemes
in the space of measures.

As for the layout of the article, in section 2 we introduce notation that will be used
throughout the paper and point out any proven results useful in our analysis. In section
3, we discuss the model in more detail and state the assumptions of the model ingredients.
In section 4, we develop and study an explicit and semi-implicit scheme on model (1). We
prove convergence of these schemes and discuss the advantages of each. In section 5, we
derive model (2) in the setting of Radon measures. We then develop an explicit scheme on
this model. In section 7, we test the schemes against well known examples. We display the
computation time as well as numerical order of convergence. We leave the reader with some
discussion and comments in section 8.

2 Preliminaries and Notation
In this section, we will provide some useful definitions and notation that will be used through-
out the manuscript.

We denoted byM(R+) the space of finite Radon measures over R+ := [0,∞). Likewise,
we denote its non-negative cone by M+(R+). Both of these spaces will be equipped with
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the Bounded-Lipschitz (BL) norm defined by

‖µ‖BL := sup
‖φ‖W1,∞≤1

{∫
R+

φ(x)µ(dx) : φ ∈ W 1,∞(R+)

}
,

where W 1,∞(R+) is the usual Sobolev space over R+ with codomain R equipped with the
usual norm ‖φ‖W 1,∞ := ‖φ‖∞ + ‖φ′‖∞. In contrast, the traditional norm associated with
M(R+) is the total variation (TV) norm given by

‖ν‖TV = |ν|(R+) = sup
‖f‖∞≤1

{∫
R+

f(x)ν(dx) : f ∈ Cc(R+)

}
.

These norms are well studied and compared in [31].
We remark that the BL and TV norms are equal onM+(R+) but are different onM(R+),

indeed,
‖µ‖BL ≤ ‖µ‖TV

for µ ∈ M(R+). It has also been shown in [31] thatM(R+) is not complete under the BL
norm. However, this problem is alleviated in closed balls under the TV norm. Indeed as
shown in [30] sets of the form

S := {µ ∈M(R+) : ‖µ‖TV < R}
are complete under the BL norm. In M+(R+), we additionally have that the BL-norm
metrizes weak convergence. That is, a sequence (µn)n converges weakly to µ ∈ M+(R+) if
for every f ∈ Cb(R+), ∫

R+

f(x)(µn(dx)− µ(dx)) −→ 0,

as n −→∞. For more detail, we refer the reader to the aforementioned citations.
It is often convenient to use the operator notation in place of integration. That is for a

function f , we say

(µ, f) :=

∫
A

f(x)µ(dx),

where the set A is the support of the measure µ.
Finally, we say the flow of a Lipschitz vector field g(t, x) is the function T gs,t(x) which

satisfies
d

dt
T gs,t(x) = g(t, Ts,t(x)), T gs,s(x) = x. (3)

In the case that s = 0, we often will write Tt := Ts,t.

3 Size Structured Coagulation-Fragmentation Model
In this section, we introduce and explain the size structured coagulation-fragmentation model
(1). Well-posedness of this model is presented in [7]. We propose the following model:

∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ], (t, x) ∈ (0, T ]× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy), t ∈ [0, T ]

µ(0) = µ0 ∈M+(R+),

. (4)
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where

µ : [0, T ] −→M+(R+),

g, d, β : [0, T ]×M+(R+) −→ W 1,∞(R+),

K :M+(R+) −→M(R+),

F :M+(R+) −→M(R+).

(5)

Here and from now on, the functions g, d, and β are nonnegative and represent the growth,
death, and birth functions, respectively. They are assumed to be influenced by both time, t,
and the solution to the population model, µ(t). In applications (e.g., see [2, 3, 18, 21]), it is
common for these functions to depend on a weighted mean of the population in the following
form:

β(t, µ)(x) = B

(
t, x,

∫
R+

KB(y)µ(dy)

)
and similar expressions for g and d, for given maps B : [0, T ] × R+ × R+ → R+ and
KB : R+ → R+. Common physically motivated model functions utilize Beverton–Holt type
[12] or Ricker type [59] nonlinearities with respect to the weighted mean of the population
and of a Von Bertalanffy type [53] model with respect to structure x.

The coagulation term in model (1) is the measure given by

K[µ](·) =
1

2

∫
R+

∫
R+

κ(y, y′)δy+y′(·)µ(dy′)µ(dy)−
(∫

R+

κ(y, ·)µ(dy)
)
µ

=: K+[µ]−K−[µ],

(6)

where κ(x, y) represents the rate at which individuals of size x coalesce with individuals of
size y. The first term in (6), K+[µ], represents the inflow of individuals due to coagulation.
The second term in (6), K−[µ], represents the number of individuals lost due to coagulation.
Notice that K±[µ] are measures which can be described in a distribution sense by

(K+[µ], φ) =
1

2

∫
R+

∫
R+

κ(y, x)φ(x+ y)µ(dx)µ(dy) (7)

and
(K−[µ], φ) =

∫
R+

∫
R+

κ(y, x)φ(x)µ(dy)µ(dx), (8)

for any bounded and measurable function φ : R+ → R. Notice that if κ is symmetric, i.e.
κ(x, y) = κ(y, x), then

(K[µ], φ) =
1

2

∫
R+

∫
R+

κ(y, x)[φ(x+ y)− φ(x)− φ(y)]µ(dx)µ(dy). (9)

In a similar light, the fragmentation term is the measure given by

F [µ](·) =

∫
R+

b(y, ·)a(y)µ(dy)− aµ =: F+[µ]− F−[µ]. (10)

Here, a(y) represents the global fragmentation rate of individuals of size y and b(y, ·) is a
measure supported on [0, y] such that b(y, A) represents the probability a particle of size y
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fragments to a particle with size in the Borel set A ⊂ R. The positive term, F+, represents
the inflow of individuals due to fragmentation, and the negative term, F−, represents the
number of individuals lost due to fragmentation. Similar to the coagulation terms, F±[µ]
are measures given explicitely by

(F+[µ], φ) =

∫
R+

(b(y, ·), φ)a(y)µ(dy), where (b(y, ·), φ) =

∫ y

0

φ(x)b(y, dx),

and
(F−[µ], φ) =

∫
R+

a(y)φ(y)µ(dy).

We impose the following assumptions on the growth, death and birth functions:

(A1) For any R > 0, there exists LR > 0 such that for all ‖µi‖TV ≤ R and ti ∈ [0,∞)
(i = 1, 2) the following hold

‖g(t1, µ1)− g(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),

‖d(t1, µ1)− d(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),

‖β(t1, µ1)− β(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),

(A2) There exists ζ > 0 such that for all T > 0

sup
t∈[0,T ]

sup
µ∈M+(R+)

‖g(t, µ)‖W 1,∞ + ‖d(t, µ)‖W 1,∞ + ‖β(t, µ)‖W 1,∞ < ζ,

(A3) For all (t, µ) ∈ [0,∞)×M+(R+),

g(t, µ)(0) > 0 and g(t, µ)(xmax) = 0

for some large xmax > 0.

We assume that the coagulation kernel κ satisfies the following assumption:

(K1) κ is symmetric, nonnegative, bounded by a constant Cκ, and globally Lipschitz with
Lipschitz constant Lκ.

(K2) κ(x, y) = 0 whenever x+ y > xmax.

We assume that the fragmentation kernel satisfies the following assumptions:

(F1) a ∈ W 1,∞(R+) is non-negative,

(F2) for any y ≥ 0, b(y, dx) is a measure such that

(i) b(y, dx) is non-negative and supported in [0, y], and there exist a Cb > 0 such that
b(y,R+) ≤ Cb for all y > 0,
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(ii) there exists Lb such that for any y, ȳ ≥ 0,

‖b(y, ·)− b(ȳ, ·)‖BL ≤ Lb|y − ȳ|

(iii) for any y ≥ 0,

(b(y, dx), x) =

∫ y

0

x b(y, dx) = y.

It follows from (F2) that for any φ, with ‖φ‖W 1,∞ ≤ 1, the function Φ[φ](y) = (b(y, ·), φ) is
bounded Lipschitz with ‖Φ[φ](y)‖W 1,∞ ≤ C̄b = max{Cb, Lb}.

With the above assumptions, we have the following useful propositions proven in [7]:

Proposition 3.1. For every µ ∈M(R+), we have

‖K[µ]‖TV ≤
3

2
Cκ‖µ‖2

TV . (11)

For every µ, ν ∈M(R+) with ‖µ‖TV , ‖ν‖TV ≤ R,

‖K[µ]−K[ν]‖BL ≤ L̄κ,R‖µ− ν‖BL, (12)

where L̄κ,R is a constant depending only on Cκ, Lκ, and R.

Proposition 3.2. For any µ ∈M(R+), we have

‖F [µ]‖TV ≤ (C̄b + 1)‖a‖∞‖µ‖TV (13)

and
‖F [µ]− F [ν]‖BL ≤ Ca,b‖µ− ν‖BL. (14)

Given T ≥ 0, we say a function µ ∈ C([0, T ],M+(R+)) is a weak solution to (1) if for all
φ ∈ (C1 ∩W 1,∞)([0, T ]× R+) and for all t ∈ [0, T ], the following holds:∫ ∞

0

φ(t, x)µt(dx)−
∫ ∞

0

φ(0, x)µ0(dx) =∫ t

0

∫ ∞
0

[∂tφ(s, x) + g(s, µs)(x)∂xφ(s, x)− d(s, µs)(x)φ(s, x)]µs(dx)ds

+

∫ t

0

(K[µs] + F [µs], φ(s, ·)) ds+

∫ t

0

∫ ∞
0

φ(s, 0)β(s, µs)(x)µs(dx)ds.

(15)

Notice that we can also write model (1) with the boundary condition as a source term:

∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ] + S(t)[µt], (16)

where S(t)[µ] =
( ∫∞

0
β(t, µ)(y)µ(dy)

)
δx=0.

Remark 3.1. Well-posedness for equation (4) under assumptions (A1)-(A3), (K1)-(K2),
(F1)-(F2) is established in [7]. We note that if µ0 is supported on the finite domain [0, xmax],
then assumptions (A3) and (K2) guarantee the solution remains supported in this interval
for all t > 0. This allows any integration against µt(dx) listed above to collapse to integration
over [0, xmax].
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4 An explicit and a semi-implicit numerical scheme
In this section, we introduce two numerical schemes to approximate equation (4) assuming
the initial condition µ0 is a non-negative measure supported on [0, xmax]. The first scheme
is fully explicit and the second, semi-implicit. We prove the convergence of the numerical
solution toward the solution of (4) in both cases.

We discretize the space domain [0, xmax] by introducing the points xj := j∆x, j =
0, 1, 2, 3, . . . , J , with xJ = xmax, and the time domain [0, T ] considering the points tk := k∆t,
where k = 0, 1, 2, . . . , k̄ and tk̄ = T . Denote Λj := (xj−1, xj], j ≥ 1. We then approximate
the initial condition µ0 by the following combination of Dirac delta measures placed at the
nodes xj:

µ0 ≈
J∑
j=1

m0
jδxj where m0

j := µ0(Λj).

We will then approximate the solution µtk of (4) by measures µk∆x of the form

µk∆x =
J∑
j=1

mk
j δxj , (17)

where the coefficients mk
j are obtained through some numerical scheme.

To formulate the numerical scheme we introduce the following discretization of the model
coefficients:

• for the functions f = g, β, d:

fkj := f(tk, µ
k
∆x)(xj),

• for the coagulation kernel κ(x, y):

κj,l := κ(xj, xl),

• for the fragmentation measure b(x, ·):

b∆x(xi) :=
i∑

j=1

bi,jδxj where bj,l := b(xj,Λl).

4.1 Explicit Scheme

In this section, we define the coefficientmk
j in (17) through the following fully explicit scheme:

mk+1
j −mk

j

∆t
+
gkjm

k
j − gkj−1m

k
j−1

∆x
+ dkjm

k
j =

1

2

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
i=1

κi,jm
k
im

k
j

+
J∑
i=j

bi,jaim
k
i − ajmk

j j = 1, .., J,

gk0m
k
0 = ∆x

J∑
j=1

βkjm
k
j

. (18)
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We can rewrite this equation so as to express mk+1 in function of mk as follows:

mk+1
j =

(
1− ∆t

∆x
gkj −∆t

J∑
i=1

κi,jm
k
i −∆tdkj −∆taj

)
mk
j +

∆t

∆x
gkj−1m

k
j−1

+
1

2
∆t

j−1∑
i=1

κi,j−im
k
im

k
j−i + ∆t

J∑
i=j

bi,jaim
k
i j = 1, ..., J,

gk0m
k
0 = ∆x

J∑
j=1

βkjm
k
j .

. (19)

For this scheme, we impose the following Courant–Friedrichs–Lewy (CFL) condition

∆t
(
Cκ‖µ0‖TV exp((ζ + CbCa)T ) + Ca max{1, Cb}+ (1 +

1

∆x
)ζ
)
≤ 1. (20)

where the constants Ca, Cb, Cκ are defined in assumptions (A1), (F1), (F2).

The proof of the convergence of this explicit scheme is done through a series of lemmas.
We first prove that the approximate solutions µk∆x, defined in (17), are non-negative and
bounded in the TV-norm uniformly in ∆t and ∆x:

Lemma 4.1. For each k = 1, . . . , k̄, the measure µk∆x is non-negative and satisfies

‖µk∆x‖TV ≤ ‖µ0‖TV exp((ζ + CbCa)T ). (21)

Proof. We show via induction that for any k = 1, . . . , k̄,

(i) µk∆x ∈M+(R+) i.e. mk
j ≥ 0 for all j = 1, . . . , J ,

(ii) ‖µk∆x‖TV ≤ ‖µ0
∆x‖TV (1 + (ζ + CbCa)∆t)

k.

The TV-bound stated in the Lemma then follows using that (1 + x) ≤ ex and k∆t ≤ T .
Let us first verify that mk+1

j ≥ 0. Since g, β, κ, a, and b are non-negative, it is enough,
in view of (19), to verify that

1

∆x
gkj +

J∑
i=1

κi,jm
k
i + dkj + aj ≤

1

∆t
. (22)

Notice that in view of assumptions (A2) and (F1) we have gkj , dkj ≤ ζ and aj ≤ Ca. Moreover
by the induction hypothesis and (K1),

J∑
i=1

κi,jm
k
i ≤ Cκ

J∑
i=1

mk
i = Cκ‖µk∆x‖TV ≤ Cκ‖µ0

∆x‖TV exp((ζ + CbCa)T ).

We thus obtain (22) using the CFL condition (20).
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Concerning the total variation bound, notice first that since mk+1
j ≥ 0 for all j, we have

‖µk+1
∆x ‖TV =

∑J
j=1 m

k+1
j . Then from rearranging (18) we obtain

‖µk+1
∆x ‖TV ≤

J∑
j=1

mk
j +

∆t

∆x

J∑
j=1

(
gkj−1m

k
j−1 − gkjmk

j

)
+ ∆t

J∑
j=1

J∑
i=j

bi,jaim
k
i

+∆t
(1

2

J∑
j=1

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
j=1

J∑
i=1

κi,jm
k
im

k
j

)
.

(23)

Since gkJ = 0 by (A3),

J∑
j=1

(
gkj−1m

k
j−1 − gkjmk

j

)
= gk0m

k
0 − gkJmk

J = ∆x
J∑
j=1

βkjm
k
j ≤ ζ∆x

J∑
j=1

mk
j . (24)

Moreover,
∑i

j=1 bi,j = b(xi,R+) ≤ Cb by (F2) so that

J∑
j=1

J∑
i=j

bi,jaim
k
i =

J∑
i=1

i∑
j=1

bi,jaim
k
i ≤ CbCa

J∑
i=1

mk
i . (25)

Finally, due to assumption (K2), we have κij = κji ≥ 0. Together with mk
i ≥ 0, we obtain

J∑
j=1

j−1∑
i=1

κi,j−im
k
im

k
j−i =

J−1∑
i=1

J∑
j=i+1

κi,j−im
k
im

k
j−i =

J∑
i=1

J∑
l=1

κi,lm
k
im

k
l (26)

Thus,

1

2

J∑
j=1

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
j=1

J∑
i=1

κi,jm
k
im

k
j ≤ −

1

2

J∑
i=1

J∑
l=1

κi,lm
k
im

k
l ≤ 0.

Therefore, (23) yields

‖µk+1
∆x ‖TV ≤ (1 + (ζ + CaCb)∆t)

J∑
j=1

mk
j = (1 + (ζ + CaCb)∆t)‖µk∆x‖TV .

Using the induction hypothesis, we obtain ‖µk+1
∆x ‖TV ≤ ‖µ0

∆x‖TV (1 + (ζ + CbCa)∆t)
k+1 as

desired.

Lemma 4.2. There exists an L > 0 independent of ∆x and ∆t such that for any p, q,

‖µq∆x − µ
p
∆x‖BL ≤ L|q − p|∆t.
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Proof. For φ ∈ W 1,∞(R+) with ‖φ‖W 1,∞ ≤ 1, and denoting φj := φ(xj), we have thanks to
Lemma 4.1 that for any k,

(µk+1
∆x − µ

k
∆x, φ) =

J∑
j=1

(mk+1
j −mk

j )φj

≤∆t
J∑
j=1

φj

( 1

∆x
(gkj−1m

k
j−1 − gkjmk

j )− dkjmk
j − ajmk

j

+
1

2

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
i=1

κi,jm
k
im

k
j +

J∑
i=j

bi,jaim
k
i

)
.

Denoting C∗ the right-hand side of the TV-bound (21), we obtain

(µk+1
∆x − µ

k
∆x, φ) ≤ ∆t

∆x

J∑
j=1

φj(g
k
j−1m

k
j−1 − gkjmk

j ) + ∆t(ζ + Ca + CbCa +
3

2
CκC

∗)C∗.

Moreover since gkJ = 0, the sum in the right-hand side can be written as

φ1g
k
0m

k
0 +

J−1∑
j=1

(φj+1 − φj)gkjmk
j = ∆xφ1

J∑
j=1

βkjm
k
j +

J−1∑
j=1

(φj+1 − φj)gkjmk
j ≤ 2∆xζC∗.

We thus obtain

(µk+1
∆x − µ

k
∆x, φ) ≤ L∆t, L := (3ζ + Ca + CbCa +

3

2
CκC

∗)C∗.

Taking the supremum over φ gives ‖µk+1
∆x −µk∆x‖BL ≤ L∆t for any k. The result follows.

We define continuous curves µ∆t
∆x : [0, T ] → M+(R+) by linearly interpolating the µk∆x,

k = 1, . . . , k̄:

µ∆t
∆x(t) = µ0

∆xχ0(t) +
k̄−1∑
k=0

[(
1− t− tk

∆t

)
µk∆x +

t− tk
∆t

µk+1
∆x

]
χ(tk,tk+1](t).

We deduce from Lemmas 4.1 and 4.2 that the measures µ∆t
∆x(t) satisfy

‖µ∆t
∆x(t)‖TV ≤ ‖µ0‖TV exp((ζ + CbCa)T ) t ∈ [0, T ], (27)

and
‖µ∆t

∆x(t)− µ∆t
∆x(t

′)‖BL ≤ L|t− t′|∆t t, t′ ∈ [0, T ]. (28)

We can now prove that the family of numerical approximations µ∆t
∆x converge to the

unique solution of (1):

Theorem 4.1. As ∆t,∆x → 0 while the CFL condition (20) holds, the whole family µ∆t
∆x

converges to the solution of (1) in C([0, T ],M+([0, xmax])).

11



Proof. Recall that any set of the form

XR := {µ ∈ C([0, T ],M+([0, xmax])) : sup
0≤t≤T

‖µ(t)‖TV ≤ R} R > 0,

where M+([0, xmax]) is endowed with the BL-norm, is complete. In view of (27) and (28)
we can thus apply Arzel-Ascoli Theorem to µ∆t

∆x ∈ XR, R = ‖µ0‖TV exp((ζ + CbCa)T ), to
obtain that the family µ∆t

∆x is relatively compact. The Theorem will thus follow if we can
prove that any convergent subsequence of µ∆t

∆x converges to the unique solution of (1).
We thus consider a subsequence µ∆t

∆x, which we still denote µ∆t
∆x for notational convenience,

converging to some µ. Take some φ ∈ C1([0, T ] × [0, xmax]). Multiplying equation (18) by
φkj := φ(k∆t, j∆x) and rearranging we have

k̄−1∑
k=1

J∑
j=1

(
(mk+1

j −mk
j )φ

k
j +

∆t

∆x
(gkjm

k
j − gkj−1m

k
j−1)φkj + ∆tφkjd

k
jm

k
j

)
=

∆t
k̄−1∑
k=1

J∑
j=1

φkj

(
1

2

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
i=1

κi,jm
k
im

k
j +

J∑
i=j

bi,jaim
k
i − ajmk

j

)
.

(29)

We point out the terms on the left-hand side of the above equations are identical to Theorem
4.2 of [6] where we proved that

k̄−1∑
k=1

J∑
j=1

(
(mk+1

j −mk
j )φ

k
j +

∆t

∆x
(gkjm

k
j − gkj−1m

k
j−1)φkj + ∆tφkjd

k
jm

k
j

)
=

∫
φ(T, x)dµ∆t

∆x(T )(x)−
∫
φ(0, x)dµ0

∆x(x)

−
∫ T

0

(∫ [
∂xφ(t, x)g(t, µ∆t

∆x)(x) + ∂tφ(t, x)− d(t, µ∆t
∆x(t))(x)φ(t, x)

]
dµ∆t

∆x(t)(x)

+ φ(t, 0)

∫
β(t, µ∆t

∆x(t))(x)dµ∆t
∆x(t)(x)

)
dt+ o(1),

(30)

where o(1)→ 0 as ∆x,∆t→ 0.
We now focus on the terms on the right-hand side of (29). We have with assumption

(K2)
J∑
j=1

(
1

2

j−1∑
i=1

φkjκi,j−im
k
im

k
j−i −

J∑
i=1

φkjκi,jm
k
im

k
j

)
=

1

2

J∑
i=1

J∑
j=i+1

φkjκi,j−im
k
im

k
j−i −

J∑
j=1

J∑
i=1

φkjκi,jm
k
im

k
j

=
1

2

J∑
i=1

J∑
l=1

(φkl+i − φkl − φki )κi,lmk
im

k
l

= (K[µk∆x], φ
k). (31)

As for the fragmentation terms, we first notice that
J∑
j=1

J∑
i=j

bi,jφ
k
jaim

k
i =

J∑
i=1

i∑
j=1

bi,jφ
k
jaim

k
i =

J∑
i=1

(b∆x(xi, ·), φk)aimk
i . (32)
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Moreover, denoting Lip(φ) the Lipschitz constant of φ,

|(b∆x(xi, ·), φk)− (b(xi, ·), φk)| = |
i∑

j=1

(b(xi, ·)(φk(xj)− φk)1Λj
)| ≤ Cb∆xLip(φ).

It follows that

J∑
j=1

J∑
i=j

bi,jφ
k
jaim

k
i −

J∑
j=1

ajφ
k
jm

k
j = (F [µk∆x], φ

k) +O(∆x),

where O(∆x) ≤ Cb∆xLip(φ). Thus the right-hand side of (29) is

∆t
k̄−1∑
k=1

{
(K[µk∆x], φ

k) + (F [µk∆x], φ
k)
}

+O(∆x)

= ∆t
k̄−1∑
k=1

{
(K[µ∆x

∆x(tk)], φ(tk, ·)) + (F [µ∆x
∆x(tk)], φ(tk, ·))

}
+O(∆x).

Making use of (12) and (14), it is easily seen that (K[µ∆x
∆x(t)], φ(t, ·)) and (F [µ∆x

∆x(t)], φ(t, ·))
are continuous in t. Thus the right-hand side of (29) is∫ T

0

(K[µ∆x
∆x(t)], φ(t, ·)) + (F [µ∆x

∆x(t)], φ(t, ·)) dt+ o(1).

The result follows.

4.2 Semi-Implicit Scheme

We present now a slight modification of the explicit scheme of the previous section where we
approximate the coagulation term by 1

2

∑j−1
i=1 κi,j−im

k+1
i mk

j−i −
∑J

i=1 κi,jm
k
im

k+1
j . We thus

obtain the following scheme

mk+1
j −mk

j

∆t
+
gkjm

k
j − gkj−1m

k
j−1

∆x
+ dkjm

k
j =

1

2

j−1∑
i=1

κi,j−im
k+1
i mk

j−i −
J∑
i=1

κi,jm
k
im

k+1
j

+
J∑
i=j

bi,jaim
k
i − ajmk

j ,

gk0m
k
0 = ∆x

J∑
j=1

βkjm
k
j .

(33)
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It will be useful to rewrite it as follows

(1 + ∆t
J∑
i=1

κi,jm
k
i )m

k+1
j = (1− ∆t

∆x
gkj −∆tdkj −∆taj)m

k
j +

∆t

∆x
gkj−1m

k
j−1

+
1

2
∆t

j−1∑
i=1

κi,j−im
k+1
i mk

j−i + ∆t
J∑
i=j

bi,jaim
k
i ,

gk0m
k
0 = ∆x

J∑
j=1

βkjm
k
j .

. (34)

Notice that this scheme is well-defined since mk+1
j is computed from the previous mk

i , i =

1, . . . , J , and mk+1
1 , . . . ,mk+1

j−1 .
We assume the following Courant-Friedrichs-Lewy (CFL) condition on our mesh:

ζ̄(2∆t+
∆t

∆x
) ≤ 1 where ζ̄ = max{ζ, ‖a‖W 1,∞}. (35)

We point out that contrary to the CFL condition (20) we assumed for the explicit scheme, this
CFL condition does not involve the total initial mass ‖µ0‖TV . This is the main justification
for the introduction of this semi-implicit scheme.

Lemma 4.3. For every k = 1, 2, . . . , k̄, µk∆x is a non-negative measure supported in [0, xmax]:

mk
j ≥ 0 for any j ≥ 1,

and
mk
j = 0 for j > J .

Proof. This can be proved by induction using (34). Indeed if mk ≥ 0, then notice that

1− ∆t

∆x
gkj −∆tdkj −∆taj ≥ 1− ∆t

∆x
ζ −∆t(ζ + ‖a‖∞) ≥ 1− ζ̄(2∆t+

∆t

∆x
)

which is ≥ 0 by the CFL condition. We easily deduce that mk+1 ≥ 0.
Next if mk

j = 0 for j > J , it follows from (34) that mk+1
J+1 = 0 recalling that gKJ =

g(tk, xmax) = 0 by (A3) and κi,J+1−i = 0 by (K2). We then deduce that mk+1
j = 0 for any

j > J .

We next proceed as in the study of the explicit scheme by proving that the measures µk∆x
are uniformly bounded in the TV-norm and are Lipschitz in time for the BL-norm.

Lemma 4.4. For any k = 0, 1, . . . , k̄,

‖µk∆x‖TV ≤ ‖µ0‖TV exp((CaCb + ζ)T ).

14



Proof. Notice that ‖µk+1
∆x ‖TV =

∑J
j=1 m

k+1
j since mk+1

j ≥ 0 for any j. With (33) we obtain

‖µk+1
∆x ‖TV ≤

J∑
j=1

(1−∆tdkj −∆taj)m
k
j +

∆t

∆x

J∑
j=1

(gkj−1m
k
j−1 − gkjmk

j ) + ∆t
J∑
j=1

J∑
i=j

bi,jaim
k
i

+
1

2
∆t

J∑
j=1

j−1∑
i=1

κi,j−im
k+1
i mk

j−i −∆t
J∑
j=1

J∑
i=1

κi,jm
k
im

k+1
j .

.

(36)

The 1st term in the right-hand side is clearly less than ‖µk‖TV . According to (24)-(25), the
sum of the 2nd and 3rd terms is less than (ζ +CaCb)∆t‖µk‖TV . Moreover through changing
the order of integration and a substitution as in (26), we can see

∆t

2

J∑
j=1

j−1∑
i=1

κi,j−im
k+1
i mk

j−i −∆t
J∑
j=1

J∑
i=1

κi,jm
k
im

k+1
j = −1

2
∆t

J∑
j=1

J∑
i=1

κi,jm
k
im

k+1
j .

Combining the above results, we obtain

‖µk+1
∆x ‖TV ≤ (1 + ∆t(ζ + CbCa)‖µk∆x‖TV .

Therefore, for each k = 1, 2, . . . k̄ we have

‖µk∆x‖TV ≤ (1 + ∆t(ζ + CbCa)
k‖µ0‖TV ≤ ‖µ0‖TV exp((CaCb + ζ)T ).

Lemma 4.5. There exists an L > 0 independent of ∆x and ∆t such that for any p, q,

‖µq∆x − µ
p
∆x‖BL ≤ L|q − p|∆t.

Proof. Same proof as that of Lemma 4.1.

As before, we define the family of continuous curves µ∆t
∆x : [0, T ]→M+(R+) by linearly

interpolating the µk∆x:

µ∆t
∆x(t) = µ0

∆xχ{t0}(t) +
K−1∑
k=0

[(
1− t− tk

∆t

)
µk∆x +

t− tk
∆t

µk+1
∆x

]
χ(tk,tk+1](t).

Theorem 4.2. As ∆t,∆x → 0 while the CFL condition (35) holds, the whole family µ∆t
∆x

converges to the solution of (1) in C([0, T ],M+([0, xmax])).

Proof. Due to the similarity of the semi-implicit scheme and the fully explicit scheme (4.1),
we need only show

1

2

J∑
j=1

j−1∑
i=1

φkjκi,j−im
k+1
i mk

j−i −
J∑
j=1

J∑
i=1

φkjκi,jm
k
im

k+1
j = (K[µk∆x], φ(tk, ·)) +O(∆t) (37)
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for φ ∈ W 1,∞([0, T ] × [0, xmax]), where O(∆t) depends only on the model parameters and
‖φ‖W 1,∞ . Indeed, through a change of variables the right-hand side of (37) can be written
as

1

2

J∑
i=1

J∑
l=1

κi,l(φ
k
i+l − φki − φkl )mk

lm
k+1
i

=
1

2

∫ xmax

0

∫ xmax

0

κ(x, y)(φ(tk, x+ y)− φ(tk, x)− φ(tk, y))µk∆x(dx)µk+1
∆x (dy).

Since κ and φ are bounded Lipschitz, the inner integral seen as a function of y is also
bounded Lipschitz with norm bounded by a constant depending on Cκ, Lκ, ‖φ‖W 1,∞ and
‖µ0‖TV exp((CaCb + ζ)T ) due to Lemma (4.4). Owing to Lemma 4.5, we deduce that

1

2

∫ xmax

0

∫ xmax

0

κ(x, y)(φ(x+ y)− φ(x)− φ(y))µk∆x(dx)µk+1
∆x (dy)− (K[µk∆x], φ(tk, ·)) ≤ C∆t.

Thus, we obtain (37) and the result follows as in Theorem 4.1.

5 Size Structured coagulation-fragmentation equation as
conservation law

In this section, we derive equation (2), prove it is well-posed in a new topology, and develop
an explicit scheme based on this equation.

5.1 Reformulation of (1) as a conservation law.

It was shown in [14] (proposed in [48, 66]) that a coagulation-fragmentation equation (i.e.
model (1) with g ≡ d ≡ β ≡ 0) set in the space L1(R+) can be written as a conservation law
in the following form:

x∂tu = −∂xQK [u] + ∂xQF [u], (38)

where, for u ∈ L1(R+),

QK [u](x) =

∫ x

0

∫ ∞
x−z

z κ(z, y)u(z)u(y)dydz, (39)

and
QF [u](x) =

∫ x

0

∫ ∞
x−z

z b̃(z, y)u(z + y)dydz. (40)

Here, b̃(x, y) represents the rate at which a particle of size x+ y fragments into two particles
of size x and y. Notice that ∂xQK [µ] = −xK[µ] and ∂xQF [µ] = xF [µ].

We wish to extend terms (39) and (40) to accommodate a measure setting while main-
taining the properties ∂xQK [µ] = −xK[µ] and ∂xQF [µ] = xF [µ] in a weak sense. To deal

16



with the coagulation term, multiply (39) by a test function φ ∈ Cb(R+) and integrate over
R+ to obtain

(QK [u], φ) =

∫ ∞
0

∫ x

0

∫ ∞
x−z

φ(x) z κ(z, y)u(z)u(y)dydzdx

=

∫ ∞
0

∫ ∞
0

(∫ z+y

z

φ(x) dx
)
zκ(z, y)u(y)u(z)dydz.

This can be generalized for an arbitrary measure µ(dx) considering QK [µ] defined by

(QK [µ], φ) =

∫ ∞
0

∫ ∞
0

[∫ z+y

z

φ(x)dx

]
z κ(z, y)µ(dz)µ(dy). (41)

Since κ is symmetric, we then have

(∂xQK [µ], φ) = − (QK [µ], ∂xφ) = −
∫ ∞

0

∫ ∞
0

[φ(z + y)− φ(z)] z κ(z, y)µ(dz)µ(dy)

= − (K[µ], xφ) = − (xK[µ], φ) ,

as desired.
We can generalize the fragmentation term (40) in the same way. Multiplying (40) by φ

and integrating gives

(QF [u], φ) =

∫ ∞
0

∫ x

0

∫ ∞
x−z

zb̃(z, y)u(z + y)φ(x)dydzdx.

The change of variables y := t− z yields

(QF [u], φ) =

∫ ∞
0

∫ x

0

∫ ∞
x

zb̃(z, t− z)u(t)φ(x)dtdzdx

=

∫ ∞
0

∫ ∞
0

b̃(z, t− z)z
(∫ t

z

φ
)
dz u(t)dt.

Introducing the measure b(t, dz) defined by

(b(t, dz), ψ) = a(t)−1

∫ ∞
0

b̃(z, t− z)ψ(z) dz, a(t) =

∫ ∞
0

zb̃(z, t− z) dz,

we finally obtain

(QF [u], φ) =

∫ ∞
0

(
b(t, dz), z

∫ t

z

φ dx
)
a(t)u(t)dt.

We can now replace the measure u(t)dt by an arbitrary measure µ wich results in the measure
QF [µ] defined by

(QF [µ], φ) =

∫ ∞
0

(
b(y, dx), x

∫ y

x

φ(z)dz

)
a(y)µ(dy). (42)
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Recalling that (b(y, dx), x) = y, we then have

(∂xQF [µ], φ) = −(QF [µ], ∂xφ)

=

∫ ∞
0

(b(y, dx), xφ(x))a(y)µ(dy)−
∫ ∞

0

(b(y, dx), x)φ(y)a(y)µ(dy)

= (xF [µ], φ),

as desired.
With these generalizations, we can write equation (38) in the space of Radon measures

as
x∂tµ = ∂xQF [µ]− ∂xQK [µ]. (43)

We add to this equation the biological processes of growth, birth, and death to obtain a
similar expression of equation (1)

∂t(xµ) + x∂x(g(t, µ)µ) + xd(t, µ)µ = ∂xQF [µ]− ∂xQK [µ]

g(t, µ)(0)Ddxµ(0) =

∫ ∞
0

β(t, µ)(x)µ(dx)

µ0 ∈M+(R+)

. (44)

We take the time to point out this equation can be written in the form:
∂t(xµ) + ∂x(xg(t, µ)µ+QK [µ]−QF [µ]) = g(t, µ)µ− xd(t, µ)µ

g(t, µ)(0)Ddxµ(0) =

∫ ∞
0

β(t, µ)(x)µ(dx)

µ0 ∈M+(R+)

. (45)

Given T ≥ 0, we say a function µ ∈ C([0, T ],M+(R+)) is a weak solution to (44) if for
all φ ∈ (C1 ∩W 1,∞)([0, T ]× R+), and for all t ∈ [0, T ] the following holds:∫ ∞

0

xφ(t, x)µt(dx)−
∫ ∞

0

xφ(0, x)µ0(dx) =∫ t

0

∫ ∞
0

[x∂tφ(s, x) + g(s, µs)(x)(φ(s, x) + x∂xφ(s, x))− xd(s, µs)(x)φ(s, x)]µs(dx)ds

+

∫ t

0

(QK [µs]−QF [µs], ∂xφ(s, ·)) ds

(46)

Remark 5.1. As in Remark 3.1, we can reduce the integrals above over the finite domain
[0, xmax] if the initial measure µ0 is supported in [0, xmax].

Remark 5.2. It is clear from (46) that the boundary condition in (44) is superfluous. How-
ever, this is only the case when the minimum size of the model is taken to be zero. In the
case of some positive minimum size, the term∫ t

0

∫ xmax

xmin

xminφ(s, xmin)β(s, µs)(x)µs(dx)ds
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will be present in the weak formulation (46). In this case, it is clear solutions (15) and (46)
are equivalent as the functions xφ(x) and 1

x
φ(x) are bounded-Lipschitz over [xmin, xmax] for

φ ∈ W 1,∞(R+). It is straight forward to include a positive minimum size into the following
numerical scheme.

Continuing with (44) which assumes zero minimum size, it is clear that we can write this
equation in the form

∂t(xµ) + x∂x(g(t, µ)µ) + xd(t, µ)µ = ∂xQF [µ]− ∂xQK [µ], (47)

or equivalently

∂t(xµ) + ∂x(xg(t, µ)µ) = N [µ], N [µ] := g(t, µ)µ− xd(t, µ)µ+ xF [µ] + xK[µ], (48)

with initial condition µ0 ∈M+((0,∞)).
It remains to be shown that (48) is well–posed. To this end, we introduce the following

norm onM+((0,∞)):

‖µ‖BL0 := sup
‖φ‖W1,∞≤1

{(µ, φ) : φ ∈ W 1,∞(R+), φ(0) = 0}. (49)

This norm essentially gives us no information of the measures at the left boundary while
maintaining structure on (0,∞) similar to the BL norm.

Given a measure µ ∈ M+((0,∞)), we denote µ̃ ∈ M+(R+) its extension by 0 in the
sense that µ̃(A) = µ(A ∩ (0,∞)) for any A ⊂ R+ Borel. It then follows that

(µ̃, φ) = (µ, φ1(0,∞)) (50)

for any measurable function φ either non-negative or bounded. From equation (50), the
following Lemma is immediate:

Lemma 5.1. For any µ ∈M+((0,∞)), we have

‖µ‖TV = ‖µ̃‖TV .

We also have the following estimation:

Lemma 5.2. For any µ ∈M((0,∞)), we have

‖µ‖BL0 ≤ ‖µ‖BL ≤ ‖µ̃‖BL.

Proof. The inequality ‖µ‖BL0 ≤ ‖µ‖BL follows from the inclusion

{φ ∈ W 1,∞(R+) : ‖φ‖W 1,∞ ≤ 1, φ(0) = 0} ⊂ {φ ∈ W 1,∞((0,∞)) : ‖φ‖W 1,∞ ≤ 1}.

Finally, to prove ‖µ‖BL ≤ ‖µ̃‖BL, given some ε > 0, we take φ ∈ W 1,∞((0,∞)), ‖φ‖W 1,∞ ≤ 1
such that ‖µ‖BL ≤ (µ, φ) + ε. Notice that φ can be extended to a function φ̃ ∈ W 1,∞(R+),
with ‖φ̃‖W 1,∞ ≤ 1. Then (µ, φ) = (µ̃, φ̃) ≤ ‖µ̃‖BL and the result follows.
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In the same way, given a measure µ̃ ∈ M+(R+), denote by µ = µ̃|(0,∞) its restriction
to (0,∞), i.e. µ(A) = µ̃(A) for any Borel set A ⊂ (0,∞). Then, µ̃ = µ + µ̃({0})δ0. In
particular, (µ̃, φ) = (µ, φ) for any φ with φ(0) = 0. It follows that

Lemma 5.3. For any µ̃ ∈M+(R+),

‖µ̃‖BL0 = ‖µ̃|(0,∞)‖BL0 . (51)

We now claim equation (47) is well–posed under this framework. We begin with the
following important proposition

Proposition 5.1. For any R > 0 the set

{µ ∈M+((0,∞)) : ‖µ‖TV ≤ R}

is complete for the BL0 norm. Moreover for any M,R > 0 the set

{µ ∈M+((0,M ]) : ‖µ‖TV ≤ R}

is compact for the BL0 norm.

Proof. Let us first prove that S := {µ ∈M+((0,M ]) : ‖µ‖TV ≤ R} is compact for the BL0

norm. Given a sequence µn of measures belonging to S, denote µ̃n their extension to [0,∞)
as before. Since ‖µ̃n‖TV = ‖µn‖TV ≤ R, and the set {µ ∈ M+([0,M ]) : ‖µ‖TV ≤ R} is
compact for the BL norm by Theorem 2.7 in [32], we can extract a subsequence, still denoted
µ̃n, converging to some µ̃ ∈ M+([0,M ]), ‖µ̃‖TV ≤ R. Define µ to be the restriction of µ̃ to
(0,M ] i.e. µ(A) = µ̃(A) for A ⊂ (0,M ]. Then using Lemmas 5.1 and 5.3, we have µ ∈ S
and

‖µn − µ‖BL0 = ‖µ̃n − µ̃‖BL0 ≤ ‖µ̃n − µ̃‖BL → 0.

Now let us prove that S := {µ ∈M+((0,∞)) : ‖µ‖TV ≤ R} is complete. Let (µn)n ⊂ S
be a Cauchy sequence for the BL0 norm, and µ̃n be their extensions to [0,∞). Since it
is not true that ‖.‖BL ≤ ‖.‖BL0 , we cannot a priori assert that (µ̃n)n is Cauchy for the
BL norm. Instead, we split µn into a measure on (0, 2] and a measure on [1,∞) and will
rely on the fact that the BL and BL0 norm are comparable on [1,∞). Take two smooth
functions u, v : R+ → [0, 1] such that u + v = 1 and u = 0 in [2,∞), v = 0 in [0, 1]. We
can then write µ̃n = uµ̃n + vµn =: µ̃1

n + µ2
n with µ̃1

n and µ2
n supported in [0, 2] and [1,∞)

respectively. Notice that ‖µ̃1
n‖TV , ‖µ2

n‖TV ≤ ‖µ̃n‖TV = ‖µn‖TV ≤ R. Moreover, (µ2
n)n is

Cauchy for the BL0 norm. Indeed, taking C > 0 such that ‖vφ‖W 1,∞ ≤ C if ‖φ‖W 1,∞ ≤ 1,
we have (µ2

n − µ2
m, φ) = (µn − µm, vφ) so that ‖µ2

n − µ2
m‖BL0 ≤ C‖µn − µm‖BL0 → 0 as

m,n → ∞. Clearly, the BL and BL0 norms are equivalent on M+([1,∞)). In particular,
(µ2

n)n is Cauchy for the BL norm. Since the set {µ ∈ M+([1,∞)), ‖µ‖TV ≤ R} is complete
for the BL norm, we obtain that µ2

n converges to some µ2 for the BL norm, and thus also
for the BL0 norm. Moreover, µ̃1

n converges up to a subsequence to some µ̃1 ∈ M+([0, 2]).
Denote µ1 the restriction of µ̃1 to (0, 2]. As in the first part of the proof, we have µ1

n → µ1

in the BL0 norm and thus µn → µ1 + µ2 for the BL0 norm. Moreover,

R ≥ ‖µ̃n‖TV = (µ̃1
n) = (µ̃1

n, 1) + (µ2
n, 1)→ (µ̃1, 1) + (µ2, 1) = ‖µ̃1 + µ2‖TV = ‖µ‖TV .

Thus, (µn)n has a convergent subsequence for the BL0 norm. We conclude with the classical
fact that if a Cauchy sequence has a convergent subsequence, then it converges.
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With this result, we are ready to prove (48) is well-posed under the BL0 norm.

Theorem 5.1. Given an initial condition µ0 ∈M+((0,∞)), there exists a unique continuous
global solution to (48) µ : [0,∞) −→ (M+((0,∞)), ‖ · ‖BL0) which satisfies (46).

Proof. Well–posedness of (47) under ‖ · ‖BL0 follows from the results in [8]. Indeed, by
considering first the linear equation

∂t(xµ) + ∂x(g(t, x)xµ) = 0,

we see that this is the usual transport equation on the measure xµ. Therefore, we have
the unique solution given by xµt = Tt](xµ0) i.e. (µt, φ) =

∫∞
0
φ(Tt(x)) x

Tt(x)
µ0(dx), where

φ ∈ Cb((0,∞)). Here Tt is the flow of the g (definition (3)). Notice, since g ≥ 0 by
assumption (A1), |x/Tt(x)| ≤ 1 for t > 0, which allows us to check that the integral is well
defined using the Dominated Convergence Theorem.

Next, by writing the solution to (48) as the mapping

µt = Ptµ0 +

∫ t

0

Pt−s(N [µs]) ds, (52)

where for any ν ∈ M+((0,∞)), Ptν is the measure 1
x
(T

g(t,µ)
t ](xν)) with T g(t,µ)

t = Tt the flow
of (t, x)→ g(t, µt)(x). Explicitly,

(µt, φ) =

∫ ∞
0

φ(Tt(x))
x

Tt(x)
µ0(dx) +

∫ t

0

(∫ ∞
0

φ(Tt−s(x))
x

Tt−s(x)
N [µs](dx)

)
ds.

Notice the function f(x) := φ(Tt(x)) x
Tt(x)

is bounded by ‖φ‖∞ as x
Tt(x)

≤ 1 and has derivative

f ′(x) = φ′(Tt(x))∂xTt(x)
x

Tt(x)
+
φ(Tt(x))

Tt(x)
− φ(Tt(x))

Tt(x)

x

Tt(x)
∂xTt(x).

Taking φ as in (49), we have |φ(x)| = |φ(x)− φ(0)| ≤ Lip(φ)|x| and so

|f ′(x)| ≤ ‖φ′‖∞‖∂xTt‖∞ + Lip(φ)(1 + ‖∂xTt‖∞) ≤ CLip(φ).

Following the arguments from [8], we have for a small enough T , the mapping

Γ[µt] = Ptµ0 +

∫ t

0

Pt−s(N [µs]) ds

is a contraction on

XT := {µ ∈ C([0, T ], (M+((0,∞)), ‖ · ‖BL0) : µ(0) = µ0, ‖µt‖TV ≤ 2‖µ0‖TV }.

We can then extend this to T =∞ as ‖µt‖TV ≤ ‖µ0‖TV exp(ζt). Indeed from (52),

(µt, 1) = (Ptµ0, 1) +

∫ t

0

(Pt−sN [µs], 1)ds

≤ (µ0, 1) +

∫ t

0

∫ ∞
0

g(t, µs)(x)µs(dx)ds

≤ (µ0, 1) + ζ

∫ t

0

‖µs‖TV ds.

The Gronwall inequality then gives the result.
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5.2 Finite Difference Schemes

In this section, we follow the ideas set in [6] applied to model (44). We assume that the
initial measure µ0 is supported in [0, xmax] and follow the notations defined at the beginning
of Section 4 with the following exception concerning the definition of the node xj for which
we follow [14]: we denote xj+ 1

2
:= j∆x, j = 1, . . . , J , with xJ+ 1

2
= xmax, x 1

2
= 0, and

xj = (xj− 1
2

+ xj+ 1
2
)/2 = (j − 1

2
)∆x. The cell remains Λj := (xj− 1

2
, xj+ 1

2
]. The others

notations remain the same, in particular the discretizaton of the initial condition

µ0 ≈
J∑
j=1

m0
jδxj where m0

j := µ0(Λj),

of the solution

µk∆x =
J∑
j=1

mk
j δxj ,

and of the functions f = g, β, d, κ and b:

fkj = f(tk, µ
k
∆x)(xj), κj,l = κ(xj, xl), bj,l = b(xj,Λl).

Concerning the discretization of the coagulation and fragmentation kernel QK and QF de-
fined in (41) and (42), we consider

QkK,j :=

j∑
i=1

J∑
l=j−i

∆x xiκi,lm
k
lm

k
i

and

QkF,j :=
J∑

i=j+1

j∑
l=1

xl∆x bi,laim
k
i .

Where we take QkF,0 = Qk
F,J = 0 and QkK,0 = QkK,J = 0.

There is a useful result of these approximations which reads as follows:

Proposition 5.2. Assuming
∑J

j=1m
k
j is bounded, for φ ∈ C1([0, xmax]),

(
QK [µk∆x], φ

)
=

J∑
j=1

φ(xj)QkK,j +O(∆x)

and (
QF [µk∆x], φ

)
=

J∑
j=1

φ(xj)QkF,j +O(∆x).

Proof. We have from (41)

(QK [µk∆x], φ) =
J∑
l=1

J∑
i=1

∫ xl

0

φ(xi + xj − y)dyxiki,lm
k
im

k
l .
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Using a right-hand approximation of the integral and a change of variables we arrive at

(QK [µk∆x], φ) =
J∑
j=1

j∑
i=1

J∑
l=j−i

φ(xj)xi∆xκi,lm
k
im

k
l +O(∆x)

=
J∑
j=1

φ(xj)QkK,j +O(∆x).

Using a similar strategy, we arrive at the same result for QF .

From these terms, we propose the following upwind scheme based on (44):
xj
mk+1
j −mk

j

∆t
+ xj

gkjm
k
j − gkj−1m

k
j−1

∆x
+ xjd

k
jm

k
j =
QkF,j −QkF,j−1 −QkK,j +QkK,j−1

∆x

gk0
mk

0

∆x
=

J∑
j=1

βkjm
k
j

, (53)

on which, we impose the following Courant–Friedrichs–Lewy (CFL) condition

∆t(Cκ‖µ0‖TV exp(ζ + CbCa) + CbCa + (1 +
1

∆x
)ζ) ≤ 1. (54)

Lemma 5.4. For each k = 1, . . . , k̄, the measure µk∆x is a positive Radon measure with

‖µk∆x‖TV ≤ ‖µ0‖TV exp(CT )

for some C independent of ∆x and ∆t.

Proof. We show this proof via induction. Assume the following induction hypothesis:

(i) µk∆x ∈M+(R+). In other words, mk
j ≥ 0 for all j = 1, . . . , J .

(ii) ‖µk∆x‖TV ≤ ‖µ0
∆x‖TV exp((ζ + CbCa)T )

It will be helpful to point out the following results on QkK,j and QkF,j which follow analogously
from the proof of proposition 3.1 in [14]:

QkK,j−1 −QkK,j =

j−1∑
i=1

J∑
l=j−i−1

∆x xi κi,lm
k
lm

k
i −

j∑
i=1

J∑
l=j−i

∆x xi κi,lm
k
lm

k
i

=

j∑
i=1

(
J∑

l=j−i−1

∆x xi κi,lm
k
lm

k
i −

J∑
l=j−i

∆x xi κi,lm
k
lm

k
i

)
−

J∑
l=1

∆x xj κj,lm
k
lm

k
j

=

j∑
i=1

∆x xi κi,j−i−1m
k
j−i−1m

k
i −

J∑
l=1

∆x xj κj,lm
k
lm

k
j (55)
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and

QkF,j −QkF,j−1 =
J∑

i=j+1

j∑
l=1

∆x xl bi,laim
k
i −

J∑
i=j

j−1∑
l=1

∆x xl bi,laim
k
i

=
J∑

i=j+1

j∑
l=1

∆x xl bi,laim
k
i −

J∑
i=j

j∑
l=1

∆x xl bi,laim
k
i +

J∑
i=j

∆x xj bi,jaim
k
i

= −
j∑
l=1

∆x xl bj,lajm
k
j +

J∑
i=j

∆x xj bi,jaim
k
i . (56)

Then from (53) we have

mk+1
j = mk

j −
∆t

∆x
(gkjm

k
j − gkj−1m

k
j−1)−∆tdkjm

k
j +

∆t

xj∆x
(QkK,j−1 −Qkk,j) +

∆t

xj∆x
(QkF,j −QF,j−1)

= (1− ∆t

∆x
gkj −∆tdkj )m

k
j +

∆t

∆x
gkj−1m

k
j−1 +

∆t

xj∆x
(QkK,j−1 −Qkk,j +QkF,j −QF,j−1).

From (55) and (56) we see

QkK,j−1 −QkK,j ≥ −
J∑
i=1

∆xκi,jm
k
i xjm

k
j

and

QkF,j −QkF,j−1 ≥ −
J∑
i=1

∆x bj,iai xjm
k
j .

With this, assumptions (i) and (ii), and the CFL condition (54), we have

mk+1
j ≥ (1− ∆t

∆x
gkj −∆tdkj −∆t

J∑
i=1

κi,jm
k
i −∆t

J∑
i=1

bj,iai)m
k
j +

∆t

∆x
gkj−1m

k
j−1

≥ 0.

Now, taking that mk
j is positive for all j and k, we see that

J∑
j=1

mk+1
j =

J∑
j=1

(1−∆tdkj )m
k
j −

∆t

∆x

J∑
j=1

(gkjm
k
j − gkj−1m

k
j−1)

+
J∑
j=1

∆t

xj∆x
(QkK,j−1 −QkK,j) +

J∑
j=1

∆t

xj∆x
(QkF,j −QkF,j−1)

≤
J∑
j=1

mk
j + ∆tζ

J∑
j=1

mk
j + ∆t

J∑
j=1

J∑
i=j

bi,jaim
k
i +

∆t

∆x

J∑
j=1

Qk
K,j(

1

xj+1

− 1

xj
)

≤ (1 + ∆tζ)‖µk∆x‖TV + ∆t
J∑
i=1

i∑
j=1

bi,jaim
k
i

≤ (1 + ∆t(ζ + CbCa))‖µk∆x‖TV .
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Therefore, we arrive at ‖µk∆x‖TV ≤ ‖µ0
∆x‖TV exp((ζ + CbCa)T ) := C∗.

Lemma 5.5. There exists an L > 0 such that for any p, q ∈ {1, 2, . . . , k̄}

‖µq∆x − µ
p
∆x‖BL ≤ L|q − p|∆t.

Proof. The proof of this Lemma is very similar to the proof of Lemma 4.4 in [6]. In this
particular case, we only need to handle the addition of the coagulation and fragmentation
terms. To this end, assume q > p and for nonnegative φ ∈ W 1,∞(R+) with ‖φ‖W 1,∞ = 1 let
φj := φ(xj). Then we have

(µq∆x − µ
p
∆x, φ) =

J∑
j=1

φj(m
q
j −m

p
j)

=
J∑
j=1

q−1∑
k=p

φj(m
k+1
j −mk

j )

=
J∑
j=1

q−1∑
k=p

φj(
∆t

∆x
(gkj−1m

k
j−1 − gkjmk

j )− dkjmk
j∆t)

+
J∑
j=1

q−1∑
k=p

φj
∆t

xj∆x
(QkF,j −QkF,j−1 −QkK,j +QkK,j).

The first term in the last equality is identical to [6]. Therefore, notice due to Theorem 5.4
and (56)

J∑
j=1

∆t

xj∆x
φj(QkF,j −QkF,j−1) ≤ ∆tCbCaC

∗

and from (55)

J∑
j=1

∆t

xj∆x
φj(QkK,j−1 −QkK,j) ≤ ∆tCκC

∗2.

Therefore, following the remaining argument from [6] we arrive at

(µq∆x − µ
p
∆x, φ) ≤ (3ζC∗ + CbCaC

∗ + CκC
∗2)(q − p)∆t.

Through similar arguments as before, Ascoli-Arzela’s Theorem provides us with the exis-
tence of a convergence subsequence of the family {µ∆t

∆x} in C([0, T ],M+([0, xmax])). We are
then ready to state the following Theorem:

Theorem 5.2. Any convergent subsequence of the family µ∆t
∆x converges to a solution of (44)

in C([0, T ],M+([0, xmax])).
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Proof. Rearranging (53), multiplying by φkj , and summing over j and k, we arrive at the
equation

k̄−1∑
k=1

J∑
j=1

(
(mk+1

j −mk
j )xjφ

k
j +

∆t

∆x
(gkjm

k
j − gkj−1m

k
j−1)xjφ

k
j + ∆txjφ

k
jd

k
jm

k
j

)
=

∆t

∆x

k̄−1∑
k=1

J∑
j=1

φkj
(
QkF,j −QkF,j−1 +QkK,j−1 −QkK,j

)
. (57)

Notice that the function xφ(x) is bounded Lipschitz on [0, xmax] so that we can deal with
the left-hand side of equation (57) as before. We thus focus on the right-hand side of the
above equation. First for any k, using that QkF,0 = QkF,J = 0, and (56), we have

1

∆x

J∑
j=1

φkj
(
QkF,j −QkF,j−1

)
=

1

∆x

J∑
j=1

φkj

(
J∑
i=j

∆x xj bi,jaim
k
i −

j∑
l=1

∆x xl bj,lajm
k
j

)

=
J∑
j=1

J∑
i=j

φkj xj bi,jaim
k
i −

J∑
j=1

j∑
l=1

φkj xl bj,lajm
k
j .

Making use of
∑j

l=1 xlbj,l = xj +O(∆x) proven in [7] and Lemma 5.4, we have

1

∆x

J∑
j=1

φkj
(
QkF,j −QkF,j−1

)
=

J∑
j=1

J∑
i=j

φkj xj bi,jaim
k
i −

J∑
j=1

φkj xjajm
k
j +O(∆x)

=
J∑
i=1

i∑
j=1

φkj xj bi,jaim
k
i −

J∑
j=1

φkj xjajm
k
j +O(∆x)

=
(
F [µk∆x], xφ(tk, x)

)
+O(∆x)

=
(
∂xQF [µk∆x], φ(tk, ·)

)
+O(∆x).

As for the coagulation term, summation-by-parts and recalling that QkK,0 = QkK,J = 0
yields

1

∆x

J∑
j=1

φkj (QkK,j−1 −QkK,j) =
1

∆x

J∑
j=1

(φkj+1 − φkj )QkK,j =
J∑
j=1

(φkj+1 − φkj )
j∑
i=1

J∑
l=j−i

xiκi,lm
k
lm

k
i

=
J∑
i=1

J∑
l=1

xiκi,lm
k
lm

k
i

i+l∑
j=i

(φkj+1 − φkj )

=
J∑
i=1

mk
i

J∑
l=1

xiκi,lm
k
l φ

k
i+l+1 −

J∑
i=1

mk
i φ

k
i

J∑
l=1

xiκi,lm
k
l

=
J∑
i=1

mk
i

J∑
l=1

xiκi,lm
k
l φ(tk, xi + xl)−

J∑
i=1

mk
i φ(tk, xi)

J∑
l=1

xiκi,lm
k
l +O(∆x).
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Using (K1), we can write

1

∆x

J∑
j=1

φkj (QkK,j−1 −QkK,j) =
J∑
i=1

mk
i

J∑
l=1

xiκi,lm
k
l φ(tk, xi + xl)−

J∑
i=1

mk
i φ(tk, xi)

J∑
l=1

xiκi,lm
k
l +O(∆x)

=
1

2

J∑
i=1

J∑
l=1

κi,lm
k
im

k
l (xi + xl)φ(tk, xi + xl)

−
J∑
i=1

J∑
j=1

κi,lm
k
im

k
l xiφ(tk, xi) +O(∆x)

=
(
K[µk∆x], xφ(tk, x)

)
+O(∆x)

= −
(
∂xQK [µk∆x], φ(tk, ·)

)
+O(∆x).

Therefore, the right-hand side of equation (57) becomes

∆t
k̄−1∑
k=1

(
QK [µk∆x]−QF [µk∆x], ∂xφ(tk, ·)

)
+O(∆x).

Following the arguments in Theorem 4.1 and [6], we can pass through the limit to arrive
at (46).

Remark 5.3. Borrowing the uniqueness of solutions from Theorem 5.1, we can lift conver-
gence from a subsequence in ‖ · ‖BL to the whole sequence in ‖ · ‖BL0. Also, since solutions
to (44) are taken to be absolutely continuous at the boundary, we can measure the error of
the numerical sequence in the BL norm.

6 Mass Conservation
In the study of coagulation-fragmentation equations, one desired property of numerical
schemes is the conservation of mass, namely with our notation

J∑
j=1

xjm
k
j =

J∑
j=1

xjm
0
j for all k = 1, 2, . . . , k̄. (58)

We examine in this section to what extent the numerical schemes we introduced so far
conserve mass. We will consider separately the impact of the coagulation term and of the
fragmentation term.

Notice the growth term g and the birth and death terms β and d naturally modify mass.
We will thus assume in all this section that g = β = d ≡ 0. The fully explicit, semi-implicit
and conservation law scheme then read:

• fully-explicit:

mk+1
j −mk

j

∆t
=

1

2

j−1∑
i=1

κi,j−im
k
im

k
j−i −

J∑
i=1

κi,jm
k
im

k
j +

J∑
i=j

bi,jaim
k
i − ajmk

j (59)
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• semi-implicit:

mk+1
j −mk

j

∆t
=

1

2

j−1∑
i=1

κi,j−im
k+1
i mk

j−i −
J∑
i=1

κi,jm
k
im

k+1
j +

J∑
i=j

bi,jaim
k
i − ajmk

j (60)

• conservation law:

xj
mk+1
j −mk

j

∆t
=
QkF,j −QkF,j−1 −QkK,j +QkK,j−1

∆x
(61)

6.1 Coagulation Terms

Theorem 6.1. Suppose a ≡ 0. Then the fully explicit scheme (59) and the conservation law
scheme (61) conserve mass i.e. (58) holds true for both schemes.

Proof. In the case of the fully explicit scheme, it is enough to show

1

2

J∑
j=1

j−1∑
i=1

xjκi,j−im
k
im

k
j−i −

J∑
j=1

J∑
i=1

xjκi,jm
k
im

k
j = 0. (62)

First we can rewrite the first term in the left-hand side using (K1)-(K2) as
J∑
j=1

j−1∑
i=1

xjκi,j−im
k
im

k
j−i =

J∑
i=1

J∑
j=i+1

xjκi,j−im
k
im

k
j−i =

J∑
i=1

J∑
l=1

xl+iκi,lm
k
im

k
l

=
J∑
i=1

J∑
l=1

(xl + xi)κi,lm
k
im

k
l

where we used that xl+i = (l + i)∆x = xl + xi. Equation (62) follows.
Concerning the conservation law scheme, notice that QkF,j = 0 for any j, k since a = 0.

It is thus enough to show that
J∑
j=1

(QkK,j−1 −QkK,j) = 0.

Using (55), this is
J∑
j=1

j∑
i=1

xi κi,j−i−1m
k
j−i−1m

k
i −

J∑
j=1

J∑
l=1

xj κj,lm
k
lm

k
j = 0. (63)

Using assumption (K2) we can rewrite the first term in the left-hand side as
J∑
j=1

j∑
i=1

xi κi,j−i−1m
k
j−i−1m

k
i =

J∑
i=1

J∑
j=i

xi κi,j−i−1m
k
j−i−1m

k
i =

J∑
i=1

J∑
l=1

xj κj,lm
k
lm

k
j

and (63) follows.

Remark 6.1. We point out that due to the implicit coagulation terms in the semi-implicit
scheme (4.2), we cannot arrive at the analogous result. This is confirmed numerically in
Section 7 below.
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6.2 Fragmentation Terms

In this section, we will analyze the mass conservation property of the fragmentation terms
of each scheme. With this in mind, we first examine the fully explicit and semi implicit
schemes. We point out that these schemes are equivalent when κ ≡ 0. As shown in [7],

(b∆x(xi, ·), x) = xi +O(∆x).

This introduces a source of error from the mesh side. However, in the case of a positive
minimum size xmin > 0, this problem can be fixed with a different approximation of b(y, ·)
given by

b∆x(xi, ·) =
i∑

j=1

αj(xi)δxj where αj(xi) =
1

xj

∫
Λj

xb(xi, dx).

This guarantees
(b∆x(xi, ·), x) = xi

and thus mass conservation of the fragmentation terms follows directly from equation (4.1).
Proof of convergence of this approximation in the BL norm can be found in the aforemen-
tioned paper.

In the context of the conservation law scheme (53), we have the following:

Theorem 6.2. Let κ ≡ 0. Then the conservation law scheme (61) conserves mass i.e. (58)
holds.

Proof. As before, it is enough to show

J∑
j=1

(QkK,j−1 −QkK,j) = 0.

Using (56) this is
J∑
j=1

J∑
i=j

xj bi,jaim
k
i −

J∑
j=1

j∑
l=1

xlbj,l ajm
k
j = 0.

Swapping the order of summation in the first term gives the result.

7 Numerical Results
In this section we implement the schemes in MATLAB and test them against some well
known problems. The error in the BL norm is approximated with the algorithm presented
in [34] and the order of convergence is given by

q = log

(
‖µ2∆t

2∆x − µexact‖BL
‖µ∆t

∆x − µexact‖BL

)
.
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Example 1 For the first example, we take the coagulation kernel κ(x, y) ≡ 1 with µ0 =
e−xdx and all other model ingredients are set to 0. This problem has an exact solution

µt =

(
2

2 + t

)2

exp

(
− 2

2 + t
x

)
dx

see [39] for more details. Simulation are performed over the finite domain x ∈ [0, 20]. We
present the BL error, numerical order, and computation times for each scheme in Table
1. We plot the solutions, point-wise error, and relative mass of each scheme in Figure 1.
As stated before, the semi-implicit scheme does not conserve mass through coagulation as
demonstrated in this example.

Nx Nt Explicit Semi-Implicit
BL Error Order Time (secs) BL Error Order Time (secs)

50 100 0.046406 0.059118
100 200 0.024121 0.94401 1.2972 0.029972 0.97997 1.9879
200 400 0.012296 0.97209 27.511 0.015119 0.98727 41.505
400 800 0.0062079 0.98605 455.73 0.0075973 0.99281 645.54
800 1600 0.0031190 0.99301 5942.6 0.0038088 0.99616 10370

Nx Nt Conservation Law
BL Error Order Time (secs)

50 100 0.076986
100 200 0.040102 0.94091 19.83
200 400 0.020535 0.96561 338.35
400 800 0.010408 0.98042 6223.8
800 1600 0.0052438 0.98897 88950

Table 1: The BL error, numerical order, and computation time (in seconds) for the three
schemes. We point out that for these simulations ∆x = ∆t for all trials.

Example 2 In this example we consider fragmentation. We let b(y, ·) = 2
y
dx and a(x) = x.

As given in [62], this problem has an exact solution of

µt = (1 + t)2 exp(−x(1 + t))dx.

We note that for fragmentation only equations, the fully explicit and semi-implicit are iden-
tical. We present the BL error, numerical order, and computation times for each scheme in
Table 2. We plot the solutions, point-wise error, and relative mass of each scheme in Figure
2.

Example 3 In this example, we take the model ingredients g(t, x) = 2 − 2ex, d(x) = 1,
β = 2, κ(x, y) = 1, b(y, ·) = 2

y
dx, and a(x) = x over the domain x ∈ [0, 1]. The initial

condition for this problem is given by µ0 = e−xdx. Since the solution to this equation is
unknown, we compare the approximate solutions to a reference solution generated by the
fully explicit scheme at Nx = 3200 and Nt = 6400 (See Table 3).
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Figure 1: For Example 1 we present on the left side the numerical solution at time T = 1.
On the right side we present the point-wise difference between the approximate solutions
and exact solution. On the bottom, we present the relative mass according to the initial
condition over [0, 20].

Example 4 In this example, we provide a visualization of Theorem 4.1 from [7]. To this
end we take the model ingredients of example 3 from before as well as the initial condition
µ0 = δ0.2 + δ0.4. Since g(1) = 0 and g(x) > 0 for x ∈ [0, 1), Theorem 4.1 of [7] guarantees
the steady-state solution will be absolutely continuous on the interval [0, 1). This can be
seen in Figure 3 as the solution gradually becomes absolutely continuous to the left of the
characteristic curve of the 0.2 Dirac point.

8 Conclusion
In summary, there are a few differences between the three presented numerical schemes. One
of the more striking discrepancy is in the computation time of each scheme. In all examples
presented in Section 7, the conservation law scheme was much slower in comparison to both
the explicit and semi-implicit schemes. This is mainly due to the double summations required
to compute the QkK,j and QkF,j terms. This drastic difference in computation time seemingly
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Nx Nt Explicit/SemiImplicit Conservation Law
BLError Order Time (secs) BLError Order Time (secs)

200 10 0.27759 0.51684
400 20 0.15055 0.88275 2.4223 0.28095 0.87941 23.5
800 40 0.078274 0.94362 49.012 0.14664 0.93804 376.07
1600 80 0.03989 0.97251 765.21 0.074949 0.96829 6957.5
3200 160 0.020133 0.98644 11721 0.037898 0.98379 107980

Table 2: The BL error, numerical order, and computation time (in seconds) for the three
schemes. We point out that for these simulations ∆x = ∆t for all trials.

Figure 2: For Example 2 we present on the left side the numerical solution at time T = 1.
On the right side we present the point-wise difference between the approximate solutions
and exact solution. On the bottom, we present the relative mass according to the initial
condition over [0, 20].

has no real pay off as in all mesh sizes in the above example the explicit and semi-implicit
schemes provide a more accurate approximation in a much shorter time. The main benefit
of the conservation law scheme is its mass conservation property. This is the only scheme we
have were the initial mass is conserved through fragmentation when the minimum size is zero.
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Figure 3: We present here the solution of example 4 at T = 20 over aggregated intervals of
size 0.01 and a section of the mesh. Here ∆x = 0.001 and ∆t = 0.0005.
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Nx Nt Explicit Semi-Implicit
BL Error Order Time (secs) BL Error Order Time (secs)

50 100 0.0039469 0.14104 0.025025 0.1243
100 200 0.0024508 0.68746 0.69537 0.012305 1.0242 0.60872
200 400 0.0013093 0.90442 4.4399 0.0061127 1.0093 3.585
400 800 0.0006399 1.0329 56.799 0.0030613 0.99766 55.39
800 1600 0.00028044 1.1902 1438.1 0.0015471 0.98462 1437.5

Nx Nt Conservation Law
BL Error Order Time (secs)

50 100 0.03332 0.48656
100 200 0.016804 0.98754 3.142
200 400 0.0084538 0.99115 48.925
400 800 0.0042551 0.99042 824.51
800 1600 0.0021498 0.98499 14165

Table 3: The BL error, numerical order, and computation time (in seconds) for the three
schemes compared to the reference solution generated by the fully explicit scheme.

In application, this will not be the case; therefore, to this end we provide the adjustments
to the explicit and semi-implicit schemes in Section 6.

The biggest benefit of the semi-implicit scheme is found in the CFL condition. Both
the explicit and conservation law schemes have CFL conditions which are dependent on the
initial condition. This dependency would be troublesome in sensitivity analysis on such a
model where changing parameters such as the initial condition is commonplace. The main
drawback of the semi-implicit scheme is the lack of mass conservation in both the coagulation
and fragmentation terms. In the case of a positive minimum size, the adjustments provided
in Section 6 alleviate this concern for fragmentation equations, however, there is currently
no adjustment for the coagulation terms.

The examples provided above help illustrate multiple results proven elsewhere. For in-
stance, example 4 illustrates the regularity theorem proven in [7] which has an analogous
result proven in [35] for size structured population models (i.e. with no coagulation or frag-
mentation). This property shows the different effects each term has on the solution. For
instance, the coagulation terms do not seem to affect the regularity of the solution. In other
words, a coagulation equation with discrete initial condition will remain discrete (e.g. exam-
ple 6 in [7]). In contrast, the regularity of the fragmentation kernel will affect the regularity
of the solution. Indeed, in a fragmentation equation, a discrete fragmentation kernel will
introduce point-masses throughout the population.
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